Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Cocrystallization and configurations of myo-inositol-1,2-t-camphor acetals in two crystal structures

Graeme J. Gainsford,* Sylvia M. Baars and Andrew Falshaw

Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand Correspondence e-mail: g.gainsford@irl.cri.nz

Received 19 December 2006
Accepted 26 January 2007
Online 17 February 2007
The inositol rings in ($1 S, 2 R, 3 R, 4 S, 5 S, 6 R, 7 S, 8 S, 11 S$)-myo-inositol-1,2-camphor acetal \{systematic name: $(1 R, 2 S, 3 S, 4 R,-$ $5 S, 6 R)$-5,6-[(1S,2S,4S)-1,7,7-trimethylbicyclo[2.2.1]heptane-2,2-diyldioxy]cyclohexane-1,2,3,4-tetrol\}, $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{6}$, and ($1 R$,$2 S, 3 S, 4 R, 5 R, 6 S, 7 R / S, 8 S, 11 S$)-myo-inositol-1,2-camphor acetal trihydrate $\{$ systematic name: $(1 S, 2 R, 3 R, 4 S, 5 R, 6 S)-5,6-[(1 S,-$ $4 S, 6 R / S)$-1,7,7-trimethylbicyclo[2.2.1]heptane-2,2-diyldioxy]-cyclohexane-1,2,3,4-tetrol trihydrate\}, $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, adopt flattened chair conformations with the latter crystal containing two stereoisomers in a 0.684 (2):0.316 (2) ratio, similar to that found both in solution and by calculation. Both molecules pack in the crystals in similar two-dimensional layers, utilizing strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with the trihydrate cell expanded to incorporate the additional hydrogen-bonded water molecules.

Comment

The title compounds were studied as part of a programme to prepare chiral inositol derivatives (Baars \& Hoberg, 2006; Cousins et al., 2004). The structure of (I) was noted (Pietrusiewicz et al., 1992) but no structural parameters have been reported. Previous studies of myo-inositol derivatives as listed in the Cambridge Structural Database [Allen, 2002; CSD Version 5.27 (updated August 2006); refcodes are given in capitals] indicate that these molecules frequently show novel conformational/packing effects, e.g. molecular dynamics simulation confirmed two stable conformations (XADWII; Dillen et al., 2000) and 'thermosalient behaviour' (HADKIG; Steiner et al., 1993). The camphor unit (bicyclo[2.2.1]heptane) has been found to be invariant (Clegg et al., 1995). Along with the structure of (I) (crystal A), we report a novel structure containing cocrystallized (II) and (III) (crystal B) in a ratio corresponding approximately to their relative concentrations in solution as determined by NMR. In both cases, the l-camphor used in the synthesis determined the absolute configuration assigned here, since anomalous dispersion affects, as expected, were insufficient [e.g. the Flack parameter
for crystal B was -0.2(7)]. Friedel pairs in the data have been retained for future reference purposes.

(I)

Crystal A

(II)

(III)

Crystal B

The asymmetric unit in each crystal contains one independent myo-inositol-1,2-camphor acetal unit (Figs. 1-3); in crystal B, there are also three water molecules. For crystal A, the inositol fragment absolute configuration of $\mathrm{C} 1(S), \mathrm{C} 2(R)$, $\mathrm{C} 3(R), \mathrm{C} 4(S), \mathrm{C} 5(S), \mathrm{C} 6(R)$, and for crystal B the opposite $[\mathrm{C} 1(R), \mathrm{C} 2(S), \mathrm{C} 3(S), \mathrm{C} 4(R), \mathrm{C} 5(R), \mathrm{C} 6(S)]$, was determined from the chemical synthesis based on l-camphor. In both crystals, the acetal linkages to the myo-inositol unit are similar to those observed previously [TEKPUU (Spiers et al., 1996), NOZCIO (Spiers et al., 1997), and PINMEE and PINMII (Chung et al., 1994)]. For (I), the five-membered link stereochemistry ($\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{O} 2 / \mathrm{C} 7$; Table 1) to the L -camphor unit is similar to that reported for the dihydroxybutanedioic acid dimethyl ester (NAFWEW; Mikolajczyk et al., 1996).

The l-camphor unit is present in crystal B in two sites corresponding to the two alternative configurations of attachment at the C7 atoms [(II) and (III) in the scheme]; the two are distinguished by primed and unprimed labels (Figs. 2 and 3). An initial refinement of the primed and unprimed atoms with one common isotropic U factor and freely refined occupancies indicated unambiguously that only these two related stereoisomers were present; the two sets were then

Figure 1
The molecular structure of (I) (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level.

organic compounds

grouped and refined to a final stereoisomer ratio of 0.685 (2):0.315 (2). The four $\mathrm{C} 7, \mathrm{C}^{\prime}-\mathrm{O} 1, \mathrm{O} 2$ distances were refined to a common dimension, giving the results in Table 3 (see Experimental). The observed ratio in solution from NMR was 75:25 in DMSO- d_{6}. We determined the relative electronic energies (gas phase) using the Amsterdam Density Functional program system (SCM, 2006) [with VWN local density approximation (Vosko et al., 1980)], optimizing the structures and starting from the X-ray coordinate positions. The difference between the stereoisomers (II) and (III) was $0.45 \mathrm{kcal} \mathrm{mol}^{-1}$, in good agreement with both solid state and solution observations. Compound (I) was estimated to be less

Figure 2
The molecular structure of (II) (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level.

Figure 3
The molecular structure of (III) (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level.
stable than (II) by $11 \mathrm{kcal} \mathrm{mol}^{-1}$, somewhat larger than expected.

In all structures, the inositol ring adopts a slightly flattened chair conformation, as shown by the Cremer \& Pople (1975) parameters (Table 5). In (I), the best 'arms' of the chair are atoms C1, C6, C3 and C4 [the mean out-of-plane distance is 0.014 (2) \AA], with atoms C 2 and C5 lying 0.528 (4) and -0.727 (5) \AA, respectively, from the plane; for crystal B, the corresponding best parameters are $\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 5$ and C6 [0.0193 (8) A], with C 1 and C 4 at 0.513 (2) and -0.696 (2) \AA, respectively. The five-membered rings $\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{O} 2 / \mathrm{C} 7(\mathrm{C} 7$ ') (rings $2 A$ and $2 B$; Table 5) adopt twist conformations (Evans

Figure 4
The packing of crystal A, viewed down the b axis. Only H atoms involved in selected hydrogen bonds (dashed lines) are shown. For symmetry designations, see Table 2.

Figure 5
The packing of crystal B, viewed down the b axis. Only the major stereoisomer (II) and H atoms involved in selected hydrogen bonds (dashed lines) are shown for clarity. For symmetry designations, see Table 4.
\& Boeyens, 1989). The L-camphor fused rings adopt envelope or boat configurations for the five- and six-membered rings, respectively, as expected (Clegg et al., 1995).

The crystal packing (Tables 2 and 4) can be described as similar two-dimensional layers normal to the c axis (Figs. 4 and 5). These layers are formed from strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbond interactions involving all inositol O atoms in A, and both inositol and water O atoms in crystal B as acceptors. The lcamphor rings pack 'head-to-head' separating the layers. The close $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions in crystal B (not listed in Table 4) are regarded as fortuitous [even though they fulfil the normal criteria (Desiraju \& Steiner, 1999)], because of their location and the availability of the acceptor O atoms (Fig. 5). There is also a fortuitous short contact $(\mathrm{O}-\mathrm{H} 4 \cdots \mathrm{H} 6 \mathrm{O}=1.99 \AA)$ in (I) between two H atoms involved in strong hydrogen bonds (Table 2).

Experimental

The mixed acetals were prepared according to the method of Lindberg et al. (2002).

Crystal A

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{6}$
$M_{r}=314.37$
Monoclinic, C2
$a=12.700(3) \AA$
$b=6.9721$ (17) \AA
$c=18.422(5) \AA$
$\beta=107.275$ (3) ${ }^{\circ}$
$V=1557.7$ (7) \AA^{3}

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.341 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=169(2) \mathrm{K} \\
& \text { Hexagonal, colourless } \\
& 0.47 \times 0.33 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker-Nonius APEX2 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.796, T_{\text {max }}=0.997$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.113$
$S=1.08$
2953 reflections
206 parameters
H -atom parameters constrained

Table 2
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$ for crystal A.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{O} \cdots \mathrm{O}^{2}{ }^{\text {i }}$	0.84	2.23	3.034 (3)	159
O5-H5O . $\mathrm{O}{ }^{\text {i }}$	0.84	2.12	2.752 (4)	132
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{O} \cdots \mathrm{O}^{\text {ii }}$	0.84	2.11	2.951 (4)	175
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O}^{\text {ii }}$	0.84	2.18	2.964 (4)	156

Symmetry codes: (i) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (ii) $x, y+1, z$.

Crystal B

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$Z=4$
$M_{r}=368.42$	$D_{x}=1.301 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, C2	Mo $\mathrm{K} \alpha$ radiation 2
$a=13.1708(17) \AA$	$\mu=0.11 \mathrm{~mm}^{-1}$
$b=6.9513(9) \AA$	$T=163(2) \mathrm{K}$
$c=20.737(3) \AA$	Plate, colourless
$\beta=97.899(2)^{\circ}$	$0.73 \times 0.40 \times 0.12 \mathrm{~mm}$
$V=1880.5(4) \AA^{3}$	
Data collection	
Bruker $P 4 \mathrm{CCD}$ area-detector	11666 measured reflections
diffractometer	3205 independent reflections
φ and ω scans	2697 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.021$
\quad (Blessing, 1995)	$\theta_{\max }=26.4^{\circ}$
$\quad T_{\text {min }}=0.795, T_{\max }=0.987$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
H atoms treated by a mixture of independent and constrained refinement
$w R\left(F^{2}\right)=0.059$
$v=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0383 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.15 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.14 \mathrm{e} \AA^{-3}$

Table 3
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for crystal B.

$\mathrm{O} 1-\mathrm{C} 7$	$1.430(3)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.4380(18)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.4352(16)$	$\mathrm{O} 2-\mathrm{C} 7$	$1.477(3)$
$\mathrm{O} 1-\mathrm{C} 7^{\prime}$	$1.487(6)$	$\mathrm{O} 4-\mathrm{C} 4$	$1.4370(16)$
$\mathrm{O} 2-\mathrm{C} 7^{\prime}$	$1.431(6)$	$\mathrm{O} 6-\mathrm{C} 6$	$1.420(2)$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 1$	$108.18(15)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7^{\prime}$	$106.9(3)$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-37.82(18)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$0.1(3)$
$\mathrm{C} 7^{\prime}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-12.9(3)$	$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 7^{\prime}-\mathrm{C} 12^{\prime}$	$-153.3(13)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 12$	$-105.7(4)$	$\mathrm{C} 8^{\prime}-\mathrm{C} 9^{\prime}-\mathrm{C} 10^{\prime}-\mathrm{C} 11^{\prime}$	$1.2(9)$

All the l-camphor atoms in (II) and (III) (C7-C16 and their H atoms) were freely refined in two sets, each with one common occupancy factor restrained so that the sum of the two was unity. The final occupancies were 0.685 (2) and 0.315 (2). The final difference maps showed no significant discrepancies, justifying this choice of disorder modelling. The four $\mathrm{C} 7, \mathrm{C}^{\prime}-\mathrm{O} 1, \mathrm{O} 2$ distances were restrained to a common dimension [with an s.u. of 0.01 , using the SHELXL97 SADI option (Sheldrick, 1997)]. All H atoms bound to carbon were constrained to their expected geometries ($\mathrm{C}-\mathrm{H}=0.98-$ $1.00 \AA$). H atoms on inositol O atoms were restrained to tetrahedral

Table 4
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$ for crystal B.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O}^{\text {i }}$	0.84	1.91	2.7294 (16)	167
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{O} \cdots \mathrm{O}$	0.84	1.87	2.6908 (16)	165
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{O} \cdots \mathrm{O} 8$	0.84	1.91	2.7394 (16)	172
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{O} \cdots \mathrm{O}^{\text {ii }}$	0.84	1.95	2.7762 (17)	166
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 4^{\text {iii }}$	0.853 (15)	1.903 (14)	2.7490 (16)	172 (2)
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.852 (15)	1.836 (15)	2.6746 (16)	168 (2)
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 3^{\text {iv }}$	0.829 (16)	1.900 (16)	2.7199 (16)	170 (2)
$\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O}^{\text {v }}$	0.829 (11)	2.127 (14)	2.9236 (15)	161 (2)
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{O} A \cdots \mathrm{O}^{\text {v }}$	0.837 (12)	1.967 (14)	2.7754 (17)	162 (2)
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{O} B \cdots \mathrm{O}$	0.849 (11)	2.153 (13)	2.9436 (18)	155 (2)

Symmetry codes: (i) $x, y+1, z$; (ii) $x, y-1, z$; (iii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+2$; (iv)
$x-\frac{1}{2}, y-\frac{1}{2}, z ;(\mathrm{v})-x+1, y,-z+2$.

Table 5
Cremer \& Pople (1975) parameters for rings ($\mathrm{A}^{\circ}{ }^{\circ}$) (PLATON; Spek, 2003).

Structure	Ring a	Q	θ	φ	Conformation
(I)	1	$0.550(4)$	$13.8(4)$	$190.2(17)$	Distorted chair ${ }^{2} C_{5}$
(II), (III)	1	$0.5276(14)$	$165.87(15)$	$17.8(6)$	Distorted chair ${ }^{b}{ }^{1} C_{4}$ (I)
$2 A$	$0.429(3)$	-	$206.1(5)$	Twist $^{2} T_{1}$	
(II)	$2 A$	$0.392(2)$	-	$46.2(3)$	Twist $^{2} T_{3}$
(III)	$2 B$	$0.492(3)$	-	$92.8(4)$	Twist $^{3} T_{4}$
(I)	$3 A$	$0.999(4)$	$89.5(2)$	$59.9(2)$	Boat $B_{2,5}$
(II)	$3 A$	$0.990(4)$	$89.2(3)$	$59.9(2)$	Boat $B_{2,5}$
(III)	$3 B$	$0.981(8)$	$89.1(6)$	$57.0(5)$	Boat $B_{2,5}$
(I)	$4 A$	$0.590(4)$	-	$253.1(4)$	Envelope ${ }^{3} E$
(II)	$4 A$	$0.593(5)$	-	$252.0(5)$	Envelope ${ }^{3} E$
(III)	$4 B$	$0.588(8)$	-	$250.2(8)$	Envelope ${ }^{3} E$
(I)	$5 A$	$0.594(4)$	-	$323.7(3)$	Envelope ${ }^{5} E$
(II)	$5 A$	$0.592(3)$	-	$324.3(3)$	Envelope ${ }^{5} E$
(III)	$5 B$	$0.601(9)$	-	$324.6(8)$	Envelope ${ }^{5} E$

Notes: (a) (1) C1-C6; (2A) O1/C1/C2/O2/C7; (2B) O1/C1/C2/O2/C7; ; (3A) C7-C12; (3B) C7'-C12'; (4A) C7/C8/C14/C11/C12; (4B) C $7^{\prime} / \mathrm{C}^{\prime} / \mathrm{C} 14^{\prime} / \mathrm{C} 11^{\prime} / \mathrm{C} 12^{\prime} ;(5 A) \mathrm{C} 8-\mathrm{C} 11 / \mathrm{C} 14 ;$ (5B) $\mathrm{C}^{\prime}-\mathrm{C}_{1} 1^{\prime} / \mathrm{C} 14^{\prime}$. (b) Opposite absolute configuration: $180-\theta, 180+\varphi$.
positions, with $\mathrm{O}-\mathrm{H}$ distances of $0.84 \AA$ (AFIX 87). The positions of water H atoms were restrained to $\mathrm{O}-\mathrm{H}$ distances of 0.84 (1) \AA (DFIX). All methyl, tertiary and O-bound H atoms were refined with $U_{\text {iso }}(\mathrm{H})$ values of, respectively, 1.5, 1.2 and 1.5 times $U_{\text {eq }}$ of the parent atom. In the absence of significant anomalous scattering, the values of the Flack (1983) parameter were indeterminate (Flack \& Bernardinelli, 2000).

For both compounds, data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and $S A D A B S$ (Sheldrick, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:

SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLUTON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

We thank Professor Ward T. Robinson, Professor Peter J. Steel and Dr J. Wikaira of the University of Canterbury for their assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GZ3065). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Baars, S. M. \& Hoberg, J. O. (2006). Carbohydr. Res. 341, 1680-1684.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Chung, S., Ryu, Y., Chang, Y., Whang, D. \& Kim, K. (1994). Carbohydr. Res. 253, 13-18.
Clegg, W., Golding, B. T., King, B. J. \& Maude, A. B. (1995). Acta Cryst. C51, 1825-1829.
Cousins, G., Falshaw, A. \& Hoberg, J. O. (2004). Org. Biomol. Chem. 2, 22722274.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
Dillen, J., Bredenkamp, M. W. \& Prinsloo, M.-L. (2000). Acta Cryst. B56, 738743.

Evans, D. G. \& Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
Lindberg, J., Ohberg, L., Garegg, P. J. \& Konradsson, P. (2002). Tetrahedron, 58, 1387-1398.
Mikolajczyk, M., Mikina, M., Wieczorek, M. W. \& Blaszczyk, J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1560-1562.
Pietrusiewicz, K. M., Salamonczyk, G. M., Bruzik, K. S. \& Wieczorek, W. (1992). Tetrahedron, 48, 5523-5542.

SCM (2006). ADF2006.01. SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. (URL: http://www.scm.com.)
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.08. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Spiers, I. D., Schwalbe, C. H., Blake, A. J., Solomons, K. R. H. \& Freeman, S. (1997). Carbohydr. Res. 302, 43-51.

Spiers, I. D., Schwalbe, C. H. \& Freeman, S. (1996). Acta Cryst. C52, 25752578.

Steiner, T., Hinrichs, W., Saenger, W. \& Gigg, R. (1993). Acta Cryst. B49, 708718.

Vosko, S. H., Wilk, L. \& Nusair, M. (1980). Can. J. Chem. 58, 1200-1211.

